劉徽從半徑1尺圓的內接正6邊形開始,逐次分割為12邊形,24邊形,48邊形,96邊形。反覆使用勾股定理求得各多邊形的邊長,又用劉氏多邊形面積公式求多邊形面積。

分割6邊形為12邊形

編輯

劉徽割圓術原理

令圓直徑為2尺,折半得半徑1尺。圓內接正6邊形的邊長也是1尺。[8]

如圖:

半徑OA=r=1尺=10寸

6邊形單邊長AB=M=10寸

從圓心O作AB的垂直平分線OC,將AB平分為二,

AP=BP=M/2,AP+BP=AB

垂直平分線OC和圓周相交於C,

作直線AC

AC就是12邊形的一邊,

OAP是一個直角三角形

弦=半徑=r=10寸

勾=AP=M/2=5寸

股OP 可用勾股定理求得:

令弦長=X,股長=G, 句長=M/2,則:

G

2

=

r

2

(

M

2

)

2

=

100

25

=

75

{\displaystyle {}G^{2}=r^{2}-\left({\frac {M}{2}}\right)^{2}=100-25=75}

平方寸

G

=

r

2

M

2

4

{\displaystyle {}G={\sqrt {r^{2}-{\frac {M^{2}}{4}}}}}

因為1寸 =100000忽

1平方寸 =10000000000平方忽

G

=

750000000000

=

866025

2

5

{\displaystyle {}G={\sqrt {750000000000}}=866025{2 \over 5}}

忽[9]

APC是一個小直角三角形

令小弦AC長度為m,令小句PC長度為j

j

=

r

G

=

1000000

866025

2

5

=

133974

3

5

{\displaystyle {}j=r-G=1000000-866025{2 \over 5}=133974{3 \over 5}}

用勾股定理求m:

m

2

=

(

M

2

)

2

+

j

2

{\displaystyle {}m^{2}=\left({\frac {M}{2}}\right)^{2}+j^{2}}

=

(

500000

)

2

+

(

133974.6

)

2

=

267949193445

{\displaystyle {}(500000)^{2}+(133974.6)^{2}=267949193445}

平方忽

12邊形的一邊長度

=

m

=

267949193445

=

517638.09

{\displaystyle =m={\sqrt {267949193445}}=517638.09}

12邊形的一邊長度的一半

=

m

2

=

517638.09

2

=

258819.045

{\displaystyle ={m \over 2}={517638.09 \over 2}=258819.045}

分割12邊形為24邊形

編輯

將上一輪的多邊形邊長m作為新一輪割圓的開始,

作替換M=m=12邊形的一邊長度

=

517638.09

{\displaystyle =517638.09}

繼續將此多邊形的一邊平分,周而復始,重複使用[10]:

G

=

r

2

M

2

4

{\displaystyle {}G={\sqrt {r^{2}-{\frac {M^{2}}{4}}}}}

j

=

r

G

{\displaystyle {}j=r-G}

m

2

=

(

M

2

)

2

+

j

2

{\displaystyle {}m^{2}=\left({\frac {M}{2}}\right)^{2}+j^{2}}

=

M

2

4

+

j

2

{\displaystyle {}={\frac {M^{2}}{4}}+j^{2}}

由上M^2已有現成數值

M

2

=

267949193445

{\displaystyle {}M^{2}=267949193445}

M

2

4

=

267949193445

4

=

66987298361

{\displaystyle {\frac {M^{2}}{4}}={267949193445 \over 4}=66987298361}

G

=

r

2

M

2

4

=

1000000000000

66987298361

=

965925

4

5

{\displaystyle {}G={\sqrt {r^{2}-{\frac {M^{2}}{4}}}}={\sqrt {1000000000000-66987298361}}=965925{4 \over 5}}

j

=

r

G

=

1000000

965925

4

5

=

34074

1

5

{\displaystyle {}j=r-G=1000000-965925{4 \over 5}=34074{1 \over 5}}

m

2

=

(

M

2

)

2

+

j

2

=

66987298361

+

(

34074

1

5

)

2

=

68148349466

{\displaystyle {}m^{2}=({\frac {M}{2}})^{2}+j^{2}=66987298361+(34074{1 \over 5})^{2}=68148349466}

24邊形一邊長度

m

=

68148349466

=

261052

2

5

{\displaystyle m={\sqrt {68148349466}}=261052{2 \over 5}}

分割24邊形為48邊形

編輯

將第二輪的多邊形邊長m作為第三輪割圓的起點[11],

作替換

M

=

m

=

261052

2

5

{\displaystyle M=m=261052{2 \over 5}}

M

2

=

m

2

=

68148349466

{\displaystyle {}M^{2}=m^{2}=68148349466}

M

2

4

=

68148349466

4

=

17037087366

{\displaystyle {\frac {M^{2}}{4}}={68148349466 \over 4}=17037087366}

G

=

r

2

M

2

4

=

1000000000000

17037087366

=

991444

4

5

{\displaystyle {}G={\sqrt {r^{2}-{\frac {M^{2}}{4}}}}={\sqrt {1000000000000-17037087366}}=991444{4 \over 5}}

j

=

r

G

=

1000000

991444

4

5

=

8555

1

5

{\displaystyle {}j=r-G=1000000-991444{4 \over 5}=8555{1 \over 5}}

m

2

=

(

M

2

)

2

+

j

2

=

68148349466

4

+

(

8555

1

5

)

2

=

17110278813

{\displaystyle {}m^{2}=({\frac {M}{2}})^{2}+j^{2}={68148349466 \over 4}+(8555{1 \over 5})^{2}=17110278813}

開平方,得48邊形一面

m

=

17110278813

=

130806

{\displaystyle m={\sqrt {17110278813}}=130806}

根據劉徽多邊形面積公式:

96邊形的面積= 48邊形的半周長×半徑=

m

×

48

2

×

r

{\displaystyle m\times {\frac {48}{2}}\times r}

,

所以96邊形的面積

A

96

=

130806

×

48

2

×

1000000

{\displaystyle A_{96}=130806\times {\frac {48}{2}}\times 1000000}

=

130806

×

24

×

1000000

=

31393440000000

{\displaystyle ={130806\times 24\times 1000000}=31393440000000}

平方忽

A

96

=

31393440000000

10000000000

=

313

584

625

{\displaystyle A_{96}={\frac {31393440000000}{10000000000}}=313{584 \over 625}}

平方寸

分割48邊形為96邊形

編輯

將第三輪的多邊形邊長m作為第四輪割圓的起點[12]

作替換

M

=

m

=

130806

{\displaystyle M=m=130806}

M

2

=

m

2

=

17110278813

{\displaystyle M^{2}=m^{2}=17110278813}

M

2

4

=

17110278813

4

=

4277569703

{\displaystyle {\frac {M^{2}}{4}}={17110278813 \over 4}=4277569703}

G

=

r

2

M

2

4

=

1000000000000

4277569703

=

997858

9

10

{\displaystyle {}G={\sqrt {r^{2}-{\frac {M^{2}}{4}}}}={\sqrt {1000000000000-4277569703}}=997858{9 \over 10}}

j

=

r

G

=

1000000

997858

9

10

=

2141

1

10

{\displaystyle {}j=r-G=1000000-997858{9 \over 10}=2141{1 \over 10}}

m

2

=

(

M

2

)

2

+

j

2

=

17110278813

4

+

(

2141

1

10

)

2

=

4282154012

{\displaystyle {}m^{2}=({\frac {M}{2}})^{2}+j^{2}={17110278813 \over 4}+(2141{1 \over 10})^{2}=4282154012}

開方得

96邊形的一邊

m

=

4282154012

=

65438

{\displaystyle m={\sqrt {4282154012}}=65438}

根據劉徽多邊形面積公式:

192邊形的面積

A

192

=

{\displaystyle A_{192}=}

96邊形的半周長×半徑=

m

×

96

2

×

r

{\displaystyle m\times {\frac {96}{2}}\times r}

所以192邊形的面積

A

192

=

65438

×

96

2

×

1000000

{\displaystyle A_{192}=65438\times {\frac {96}{2}}\times 1000000}

平方忽

=

65438

×

48

×

1000000

=

3141024000000

{\displaystyle ={65438\times 48\times 1000000}=3141024000000}

平方忽

A

192

=

3141024000000

10000000000

=

314

64

625

{\displaystyle A_{192}={\frac {3141024000000}{10000000000}}=314{64 \over 625}}

平方寸